Comparing mutational and standing genetic variability for fitness and size in Caenorhabditis briggsae and C. elegans.
نویسندگان
چکیده
The genetic variation present in a species depends on the interplay between mutation, population size, and natural selection. At mutation-(purifying) selection balance (MSB) in a large population, the standing genetic variance for a trait (VG) is predicted to be proportional to the mutational variance for the trait (VM); VM is proportional to the mutation rate for the trait. The ratio VM/VG predicts the average strength of selection (S) against a new mutation. Here we compare VM and VG for lifetime reproductive success (approximately fitness) and body volume in two species of self-fertilizing rhabditid nematodes, Caenorhabditis briggsae and C. elegans, which the evidence suggests have different mutation rates. Averaged over traits, species, and populations within species, the relationship between VG and VM is quite stable, consistent with the hypothesis that differences among groups in standing variance can be explained by differences in mutational input. The average (homozygous) selection coefficient inferred from VM/VG is a few percent, smaller than typical direct estimates from mutation accumulation (MA) experiments. With one exception, the variance present in a worldwide sample of these species is similar to the variance present within a sample from a single locale. These results are consistent with specieswide MSB and uniform purifying selection, but genetic draft (hitchhiking) is a plausible alternative possibility.
منابع مشابه
Spontaneous mutational and standing genetic (co)variation at dinucleotide microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans.
Understanding the evolutionary processes responsible for shaping genetic variation within and between species requires separating the effects of mutation and selection. Differences between the patterns of genetic variation observed in nature and when mutations are allowed to accumulate in the relative absence of selection can reveal biases imposed by selection. We characterize the genetic varia...
متن کاملGenetic (Co)variation for life span in rhabditid nematodes: role of mutation, selection, and history.
The evolutionary mechanisms maintaining genetic variation in life span, particularly post-reproductive life span, are poorly understood. We characterized the effects of spontaneous mutations on life span in the rhabditid nematodes Caenorhabditis elegans and C. briggsae and standing genetic variance for life span and correlation of life span with fitness in C. briggsae. Mutations decreased mean ...
متن کاملTemperature, stress and spontaneous mutation in Caenorhabditis briggsae and Caenorhabditis elegans.
Mutation rate often increases with environmental temperature, but establishing causality is complicated. Asymmetry between physiological stress and deviation from the optimal temperature means that temperature and stress are often confounded. We allowed mutations to accumulate in two species of Caenorhabditis for approximately 100 generations at 18°C and for approximately 165 generations at 26°...
متن کاملTemperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.
Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of...
متن کاملCumulative effects of spontaneous mutations for fitness in Caenorhabditis: role of genotype, environment and stress.
It is often assumed that the mutation rate is an evolutionarily optimized property of a taxon. The relevant mutation rate is for mutations that affect fitness, U, but the strength of selection on the mutation rate depends on the average effect of a mutation. Determination of U is complicated by the possibility that mutational effects depend on the particular environmental context in which the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 183 2 شماره
صفحات -
تاریخ انتشار 2009